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Abstract. A three-state IRF model of a magnetic hard-square lattice gas with anisotropic 
interactions is solved exactly on special two-dimensional manifolds in the full five- 
dimensional thermodynamic space spanned by the (ferro- or antiferro-) magnetic interac- 
tions J, K, the (attractive or repulsive) lattice-gas interactions 15, M and the activity z. 
The phase boundaries determined include multicritical lines and critical surfaces as well 
as first-order surfaces of three- and fivefold phase coexistence between the fluid and various 
(para, ferro, etc) magnetic square-ordered solid phases. Analytic expressions are given for 
free energies, interfacial tensions, correlation lengths, sublattice densities and magnetisa- 
tions. The critical behaviour of these quantities is studied and the associated critical 
exponents obtained. 

In statistical mechanics, an interaction-round-a-face or IRF model (Baxter 1982a) is 
called exactly solvable (Tracy 1985) if it yields a parametrised family of solutions to 
the star-triangle or Yang-Baxter equations and hence possesses a family of commuting 
transfer matrices. It is now known (see, for example, Bazhanov and Stroganov 1982, 
Jimbo and Miwa 1985a) that there are many such solutions to the star-triangle equations 
and hence, in principle, many exactly solvable two-dimensional lattice models. 
However, to obtain all the thermodynamic quantities of interest such as the free 
energies, interfacial tensions, correlation lengths and order parameters (one-point 
functions) one needs to calculate the eigenvalue spectrum of both the row-to-row and 
comer transfer matrices. To date this program has only been accomplished (for a 
review see Pearce 1983) for the eight-vertex (Baxter 1972, 1973, 1982a, Johnson et a1 
1973) and hard-square (hexagon) models (Baxter 1980, Baxter and Pearce 1982, 1983, 
Pearce and Baxter 1984). In this paper I indicate briefly how this program is carried 
out for a three-state IRF model (Jimbo and Miwa 1985b) of a magnetic hard-square 
lattice gas and present the results. A full account of the calculations will be published 
elsewhere. 

The magnetic hard-square model is a three-state IRF model that generalises and 
incorporates the magnetic king model and the hard-square (hexagon) lattice-gas 
models. To each site i of a square lattice assign a spin a, = 0, *1; if the site is empty 
ai = 0, if the site is full ai = + 1 or - 1 as the spin of the particle is up or down respectively. 
The occupation number of site i is then U: = 0 , l .  The Boltzmann weight of a face (a ,  
b, c, d being the four spins round a face, starting at the bottom-left and going 
anticlockwise) is taken to be 

W(a,  by c, d )  = 

I' Present address: Mathematics Department, University of Melbourne, Parkville, Victoria 3052, Australia. 

(z+ t ) ( a 2 + c 2 ) / 4  ( z + /  t)(b2+dZ)'4 exp( h Z c 2  + MbZd2 + Jac + Kbd)  
ab = bc = cd = da = 0 ( l a )  6 otherwise. 
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The activity z+ = z- of the magnetic particles is shared out between adjacent faces of 
the lattice, L and M are diagonal (next-nearest neighbour) lattice-gas interactions, J 
and K are diagonal magnetic interactions, m is a trivial prefactor and t is a local 
parameter that cancels out of the partition function and row-to-row transfer matrix. 

Subject to the nearest-neighbour exclusion uiu, = 0, there are seven independent 
Boltzmann weights: 

w1 = W(O,O, 0,O) = rn 

w 2 =  w(*I, O , O ,  0) = W(O,  0, *I,  0) = r n ( ~ + t ) " ~  

w3 = W ( O ,  *I, O , O )  = W(O,  O,O,  *I )  = r n ( ~ + / t ) ' / ~  

w 4 =  W(I,O,  1,0) = w(-1, 0, -1,0) = m(z+t)'/' eL+' 

w 5 =  W(O,  1,0, I ) =  ~ ( 0 , - 1 , 0 , - 1 ) = m ( z , / t ) ' " e " + ~  

w 6 =  W(I,O,  -1,0) = w(-I, O , I , O )  = m(z+r)"2 eL-J 

U,= W(0,  1,0, - l ) =  W(0,  - l , O ,  l ) = m ( z + / t )  e . 

(1b)  

1/2 M - K  

These weights are invariant under spin reversal and reflection about a diagonal. 
Moreover, by reversing spins on alternate pairs of diagonals on a periodic lattice, we 
can assume without loss of generality that the magnetic interactions are ferromagnetic 
( J ,  K 3 0 ) .  

The Ising and hard-square (hexagon) models are limiting cases of the more general 
model (1). If rn is set proportional to (z+ eL+")-'l2 and the limit z+ eL+" + 00 is taken, 
with L -  M held constant, then two independent Ising models are obtained, one for 
each possible fully occupied sublattice. Likewise, if J = K = 0, the model reduces to 
the two-state hard-square (hexagon) models with the total activity of the particles given 
by 

z = z + + z - = 2 z + .  (2)  

Apart from the Ising limit, the magnetic hard-square model (1) can only be solved 
exactly on three special two-dimensional manifolds in the full five-dimensional space 
spanned by z, J, K ,  L and M. Let 

a = tanh J p = tanh K. (3) 

Then these exact solution manifolds, which we denote by the letters H (generalised 
hard hexagon), E (elliptic) and T (trigonometric) are given by 

H a = p = 0  

E e L =  ( a  + p ) / p ( 1  eM = ( a  + p ) / a ( 1  - p 2 ) 1 / 2  

(4) 
z = 22, = (1 -e-L)( 1 -e-")/(eL+" -eL -e") 

( 5 )  
z = 2z+ = ( 1 - a 2, ( 1 - p ') ( 1 + a@)/ ( + p ) 4  

For isotropic interactions ( a  = p, L = M )  the manifolds H, E and T reduce to the 
curves shown in figure 1. 
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Figure 1. Exact solution curves H,  E and T for the isotropic magnetic hard-square model 
showing the tricritical point T, the multicritical point M, the essential singularity S and 
the division into various regimes. For convenience in plotting the coordinates are a, 
L = e L / ( e L + 3 )  and ; = 5 r / ( 5 z + 2 ) .  These co-ordinates vary between 0 and 1 .  

The solution on the four physical regimes HI-HIV of the H manifold has been 
presented in detail in previous papers. We will therefore only present the results for 
the E and T manifolds. To do so we need the following standard elliptic functions of 
name q ( Iq l< 1): 

m 

@,(U, q )  = 2q1'4 sin U fl ( 1  -2qzn cos 2u + q 4 y 1  - q2") 
n = l  

a 

e 4 ( u , q ) =  fl ( i - 2 q 2 n - 1 ~ ~ ~ 2 ~ + q 4 n - 2 ) ( 1 - q 2 n )  
n = l  

m 

k'( q )  = n [ ( 1  - q2"-')/( 1 + q2"-')14 
n = l  

a 

a s )  = n (1 - 4 " ) .  
n = l  

The E manifold 

(7) 

The E manifold ( 5 )  admits a natural elliptic parametrisation 

a = @1(57/3- U, 4)@4(.rr/3,4)/@1(7~/3,9)@4(.rr/3 - U, q )  

P = @,(U, 4)@4(.rr/3, q)/@,(.rr/3,4)@4(u, 4 )  

(1 --(y2)(1 - P ' ) / a P ( I  + a p )  = [@4(o, 4)/@4(7T/3, 4)13 P3.  

( 8 a )  

where OS U s ~ / 3  and the nome q is given by 

(86) 
The curves (86) of constant q fill the E manifold (5) .  The special curve q = 0 is a line 
of multicritical points which separates the surface into two distinct physical regimes 
which we denote by E1 ( q  < 0) and E11 ( q  > 0). 
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E I  (q < 0): paramagnetic square-ordered solid 

Throughout regimes E1 and E11 the partition function per site is given by 

= (04w5+ w6°7)/ ( w 4 w 5  - w 6 w 7 )  

= e , ( 4 3 ,  q ) / e 1 ( u + T / 3 ,  q)=cosh( . r+K).  (9) 

The free energy varies analytically on E even across the line of multicritical points. 
At first sight this seems surprising, but presumably the free energy is not analytic on 
the multicritical line when considered as a function over the full five-dimensional 
thermodynamic space. Certainly, the correlation lengths diverge as the multicritical 
line is approached. There are in fact two different correlation lengths: &, corresponding 
to the decay of magnetisation-magnetisation correlations ( upj) and &, correspond- 
ing to the decay of density-density correlations (ufuf). In regime E1 the correlation 
lengths and interfacial tension U are given by 

2f;’ = 6;’ = 2pu = -In kr(Iql3/’) (10) 

where p = l / k , T  is the inverse temperature. Taking q as the deviation from criticality 
variable we see that the associated critical exponents are v = p = $. 

In regime E1 one sublattice is occupied preferentially over the other. Let p1 and 
p2 be the two sublattice densities and suppose p,  > p2. Then the order parameter is 

( 1 1 )  

which clearly vanishes as the multicritical line is approached ( q  + 0-) with an exponent 
R = PI  - P Z  = (h/3)IqI’/8Q(q)Q(q2) Q2(q3)Q3(q”) /  Q7(q6)  

=:. The mean total density of the solid 

on the other hand, assumes the value pc = f as q + 0-. The sublattice magnetisations 
are m, = m, = 0, so regime E1 lies entirely withinthe paramagnetic square-ordered solid 
phase. 

EII (q > 0): jluid and ferromagnetic square-ordered solid 

Regime E11 is a first-order surface of five-fold coexistence between the fluid and four 
ferromagnetic square-ordered solid phases. The partition function per site is given by 
(9) and the correlation lengths and interfacial tension by 

(13) 
which is strikingly similar to (10) and leads to the same exponents Y = p = 3. Although 
several interfaces are possible, they all have the same interfacial tension U as given 

6;’ = 6;’ = 2pu = -In k r ( q 3 / 2 )  

by (13). 
In the solid phase the sublattice density difference is 

This order parameter vanishes at the multicritical line with an exponent PI = Q  as in 
EI. The mean total density of the solid is 



Magnetic hard squares: exact solution 3221 

compared with the fluid density 

Both these densities have the multicritical value pc = f and the density difference 
Ap = psolid - pRuid vanishes with an exponent P2 = 4. The sublattice magnetisations in 
the solid phase are 

so the magnetisation m = f( m ,  + m2) vanishes at the multicritical line with exponent 
P =A.  There is no magnetisation in the fluid phase, that is, mfluid = 0. The fluid is 
therefore paramagnetic. Indeed, there are no indications at all of the existence of a 
magnetic fluid for this model. 

The T manifold 

The T manifold (6) divides into two physical regimes which are naturally parametrised 
in terms of trigonometric (TI) or hyperbolic (TII) functions by the substitutions 

C X = S ( A  - u ) / s ( A )  P = s (u) / s (A)  (18a) 

A = ( 1 - a2 - P 2 ) /  2aP = C (  A ) (18b) 

where O <  U < A and s ( u )  = sin U (TI) or sinh U (TII). It follows that 

where c(A) =cos A (TI) or cosh A (TII). The curves ( l8b)  of constant A or A fill the 
T manifold (6). In this instance, the special curve A = 1 or A = 0 separating regimes 
TI and TI1 is a line of essential singularities. 

TI ( A >  1 ) :  jluid and paramagnetic square-ordered solid 

Regimes TI and TI1 have many similarities to the six-vertex model. Indeed the partition 
function per site K satisfies the same inversion relations (Baxter 1982b). Subject to 
some analyticity assumptions, the free energies are therefore given by the six-vertex 
expressions. In TI 

exp(-2nA) sinh nu sinh n(A - U )  
l n ( K / q )  = 2 c 

n = l  n cosh nA 

This regime is in fact a first-order surface of three-fold coexistence between the fluid 
and the two paramagnetic square-ordered solid phases. The sublattice density differ- 
ence, solid and fluid densities are respectively 

(20) R = p,  - p2 = (2 / J5 ) s1 /4~0(s6 )~ ( s18) /  ~ ~ ( s ~ )  

L 3 
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At criticality A = s = 0, R = 0 and psolid = pHuid = pc = 5. Taking A as the natural deviation 
from criticality variable, we see from (23) that R and Ap = psolid - pfluid vanish with 
essential singularities and not the usual simple power laws. The fluid and solid phases 
are paramagnetic, that is, m,  = m, = mfluid - - 0. The correlation lengths and interfacial 
tension have not been obtained in this regime or TIL 

TI1 (1A1< 1 ) :  critical surface 

The free energy in regime TI1 is given by the six-vertex expression 

(24) 
cosh (~-2A) t s inh  ut sinh(A - u ) t  

t sinh ~t cosh A t  

Unlike the other regimes, TI1 does not exhibit a limit of extreme order or disorder. In 
analogy with the six-vertex model, we therefore expect TI1 to be a critical surface with 
6-l = Po = R = m,  = m, = 0. Consistent with this claim we observe that TI1 intersects 
the E manifold precisely along the multicritical line which is the curve corresponding 
to A = 7r/3 or A =$. Likewise, evaluation of the integral in (24) for A = ~ / 3  gives 
agreement with the result (9), increasing one’s confidence that the analyticity assump- 
tions (Baxter 1982b) leading to (24) are correct. 

Transfer matrix equation: E manifold 

The row-to-row transfer matrix is defined by 

where the face weights are given by (1) and U and U’ are the configurations of two 
successive periodic rows of N spins. The parametrisations (8) with q fixed, and (18) 
with A fixed, each give a one-parameter family V( U )  of commuting transfer matrices. 
This has been established by Jimbo and Miwa (1985b) who showed that both the E 
and T families satisfy the star-triangle equations. We show further that the E family 
satisfies a remarkable functional equation. Although it seems likely that the T family 
satisfies a functional equation similar to that of the six-vertex model, such a functional 
equation has not been found. 

Let 

T(u) = [ ( U 4 0 5  - % u 7 ) / @ i ( u 4 % +  @6W7)lNRV(U) (26) 

where the spin-reversal operator is 

N 

R,,,,= n S ( U ~ ,  -U;) .  
j = 1  

Then the E family of matrices T(u) satisfies 

T( u)T(u  + .rr/3)T( u + 2 ~ / 3 )  = I + (-l)NR +T( U )  +T( u + ~ / 3 )  +T(u + 2 ~ / 3 )  (28a) 
T( U + T )  = (- l )N  RT( U) (28b) 
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where I is the identity matrix. The derivation of this functional equation is involved 
and will only be sketched here. Let V = V( U ) ,  V’= V( U + 7r/3), V = V( U + 27r/3) and 
similarly for the face weights W, W and W .  Then from (25)  it follows that 

[ W V ] O , a t  = Tr S ( a , ,  u2, U;, al,)S(a2, u3, ai, a ; ) .  . . S(aN, a’, ai, ah) 

[ S ( a , ,  U 2 ,  4, ai)ll,.T2:i[,7; = W(a, ,  (72, 7 2 ,  71) W’(71, 72, 4, 7;) W’(% 75, a;, 4). 

(29) 

where the 25 S matrices have elements 

(30) 

In general each S matrix in (29) is a 5 x 5 matrix. If, however, a; = (a:)* = 1 then 
by exclusion = T: = 0 and the corresponding S matrices have one row or column. 
There are eight such S matrices. It turns out that each of these is a linear combination 
of some simple (U-independent) left or right eigenvectors of the full 5 x 5  matrix 
S(0, 0, 0,O). By considering the action of the other S matrices on these eigenvectors 
and using their orthogonality properties combined with the periodic boundary condi- 
tions, it can be shown that the non-zero elements of W‘V” fall into three categories: 
either (i) aj = a: for all j ,  (ii) uj = -a: for all j or (iii) ajuj = 0 for all j where, for 
convenience, the case aj = U; = 0 for all j is included in category (iii). For matrix 
elements falling into categories (i) and (ii) it is now straightforward to verify that they 
are of the form required by (28a). For matrix elements in category (iii), however, it 
is necessary to effect the simultaneous triangularisation of the remaining seventeen 
5 X 5  S matrices; the trace in (29) can then be evaluated immediately from the diagonal 
elements. Although this task appears daunting the number of independent 5 x 5  
matrices is reduced from seventeen to ten by using spin-reversal symmetry. The 
triangularisation proceeds by making proper use of the known simple eigenvectors. 
In this way (28a) is eventually verified for all allowed matrix elements. 

To solve the functional equations (28) for the eigenvalues of the row-to-row transfer 
matrix it is simplest to go over to a conjugate modulus parametrisation. Define x and 

191 =exP(-s) x = exp(-n2/3s) w = e x p ( - 2 ~ u / s )  (31) 

so that 0 < x < 1 and x2 < w < 1 throughout the physical regimes. Then a convenient 
parametrisation to use is: 

w by 

E1 /.l =f(-x’)/x’q-(-x) U’ =f(-xw-’)/f(-x) 

w2 = (/.l/2)1/2x2/3f(w)/ wf(x) w3 =f(x2w-’)/f(x2) 
(32) 

w4- w-”2f(xz6’) / f (x2)  U 4  + w6 = w-’f( -xw)/f( -x) 

E11 

0 5  - w,  = 2p-lx2/3f( w)/ wf(x2) w5 + w , = 2f( - w ) wf( - 1 ) . 
Here f( w )  =f( w, x6) with 

m 

f (w ,x )=  fl ( l -x”- ’w)( l -xnw-’ ) ( l -x”) .  
n-1 

(34) 
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With this parametrisation the functional equations (28) become 

T (  w)T(x2w)T(x4w) = I + ( - 1 )  R +T( W )  + ( - 1 )  RT(x%) + T ( x ~ w )  ( 3 5 ~ )  

T(x6w) = ( - l )NRT(w) .  (356) 

The next step is to use the analyticity and periodicity properties of (32) and (33) 
in the complex w plane. Since the eigenvectors must be independent of w, it can be 
shown that the eigenvalues of V( w )  and T (  w )  must be of the form: 

E1 
N 

V ( w )  = 7wp’2 n [f(W/W,)/f(llW,)l 
j= 1 

E11 

Here R = *1  is the eigenvalue of R, n and p are integers with p = i ( l +  R )  (mod 2), 
r = V(1) is an nth root of unity (since V(1) is the shift operator) and wl,  w 2 , .  . . , wN 
are the N zeros of V ( w )  within a period annulus. 

Eigenvalue spectrum: EI and EII 

The eigenvalue spectrum of the row-to-row transfer matrix T(  w )  in regimes E1 and E11 
breaks up into a series of regular eigenvalues, plus some additional exceptional 
eigenvalues. The regular eigenvalues are characterised by the behaviour 

The precise form of these eigenvalues is 

where ao, uj, a;, bk are complex numbers, p = N -  v (mod 2), v = i ( l + R )  in EI, 
v = $[ 1 + ( - 1 )  ”1 in E11 and the constant K is determined by the requirement T (  1 )  = RT. 
The regular eigenvalues occur in bands labelled by p and R, with p = 0, 1,2,  . . . if N 
is even and p = 1 , 2 , 3  . . . if N is odd. Using (38), and neglecting exponentially small 
terms in (35a) for large N, we find that the regular eigenvalues must satisfy the simple 
functional equation 



Magnetic hard squares: exact solution 3225 

Solving this for T( w )  of the form (39) gives 

T ( w )  = fi $(W/bk)  x'< IWI < x-I 
k = l  

+ ( w )  = i ~ " ~ f ( x ~ w ,  x 4 ) / f ( x w ,  x'). 

To obtain equations for the complex numbers bk involves solving for T(  w )  outside 
the annulus x3 < I wl< x- ' .  These calculations, which are too lengthy to give here, show 
that for the bands of largest eigenvalues of interest the bk are unimodular and dense 
on the unit circle for large N. 

The exceptional eigenvalues have the form ( R  = k l ) :  

In the thermodynamic limit ( N  + CO), it is found that 

TX.R( w )  = *I. (43 )  
Clearly these eigenvalues belong with the largest ( p  = 0, R = 1) band of regular eigen- 
values To.l( w )  = 1. For N even, the total number of largest eigenvalues corresponds 
to the number of coexisting phases. In E1 there are two largest eigenvalues: To,l = 1, 
Tx,l = - 1 .  In E11 there are five largest eigenvalues: two regular eigenvalues To,l = 1 
and three exceptional eigenvalues = - 1  and Tx,-l = *l. The interfacial tension U 
can be calculated from the asymptotic degeneracy of these eigenvalues and the correla- 
tion lengths obtained from the gap to the appropriate band of next-largest eigenvalues. 

Sublattice densities and magnetisations 

The sublattice densities and magnetisations in regimes EI, E11 and TI are obtained by 
using corner transfer matrices (Baxter 1981a, b, 1982a). The recursion relations that 
arise can be solved using Gaussian polynomials as was first done by Andrews (1981). 
The results (14)-(17) arid (22) were essentially obtained by Jimbo and Miwa (1985b). 
The results (:l), (12), (20) and (21), however, are new and the working, which is 
similar to the other cases, will be given elsewhere. The corner transfer matrix methods 
fail in regime TII. However, if this is a critical surface as seems likely, then R = m, = 
m, = 0. Finally, since p1 = p2 = pc = f on the multicritical line and on the line of essential 
singularities, it is tempting to conjecture that p1 = p2 = f throughout regime TII. 
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